
Spring 2024: Math 791 Exam 1 Solutions

For this exam, you may use your notes, the Daily Summary, and any homework (giving complete details), but you may not

consult any other sources, including: any algebra textbook, the internet, classmates or any other students not in this class,
or any professor except your Math 791 instructor. You may not cite any group theoretical facts not covered in class or the

homework. To receive full credit, all proofs must be complete and contain the appropriate amount of detail. Please upload a

pdf copy of your solutions to Canvas no later than 6pm on Monday, February 19.

Good luck on the exam!

1. Treating Z, Q and R as abelian groups under addition, consider the abelian group Q/Z. Prove:

(i) Every element of Q/Z is a coset of the form q + Z, with 0 ≤ q < 1.

(ii) Every element of Q/Z has finite order, but there are elements in Q/Z of arbitrarily large order.

(iii) Q/Z is the subgroup of R/Z of elements of finite order.

Solution. For (i), suppose r + Z ∈ Q/Z. We may write r = r0 + n, where n is an integer and 0 ≤ r0 < 1. But then
r + Z = (r0 + n) + Z = r0 + Z.

For (ii), if r + Z ∈ Q/Z, write r = a
b

, with a, b ∈ Z, and b > 0. Then b · r, which is r added to itself b times, equals a as an

element of Z. This shows that in Q/Z, r + Z added to itself finitely many times is a+ Z = 0 + Z. Thus, r + Z has finite order.

For n ≥ 1, 1
n

+ Z clearly has order n, so that Q/Z has elements of arbitrarily large order.

For (iii), let ρ+ Z ∈ R/Z have finite order, for ρ ∈ R. Then n(ρ+ Z) = nρ+ Z = 0 + Z, for some integer n ≥ 1. Thus, nρ ∈ Z,
so that nρ = m, for some m ∈ Z. But this implies ρ ∈ Q, and therefore, Q/Z is the set of elements of finite order in R/Z. �

2. Let H be subgroup of the group G and suppose {gαH}α∈A are the distinct left cosets of H in G. Prove that H is normal
in G if for all α ∈ A, gαH = Hgα.

Solution. Let g ∈ G. Then g ∈ gαH, for some α. Thus, g ∈ gH = gαH = Hgρ, which implies Hg = Hgρ. Thus, gH = Hg,

which shows that H is normal in G. �

3. Let H,K be subgroups of G.

(i) Show that HK is a subgroup of G if and only if HK = KH. Conclude that if K is normal in G, then HK is a

subgroup.
(ii) Suppose H,K are finite. Show that |HK| · |H ∩K| = |H| · |K|. Here we do not assume that HK is a subgroup of G.

Solution. For part (i), suppose HK = KH. Take hk ∈ HK. Then (hk)−1 = k−1h−1 ∈ KH = HK. Suppose hk, h1k1 ∈ HK.

Then, (hk)(h1k1) = h(kh1)k1 = hh′k′k1 ∈ HK, since kh1 ∈ KH = HK. Thus HK is a subgroup. Conversely, suppose HK is

a subgroup. Let kh ∈ KH. Then kh = (h−1k−1)−1 ∈ HK, thus KH ⊆ HK. Now suppose h ∈ H, k ∈ K. Then (ek−1)(h−1e)
is a product of elements in HK, so (ek−1)(h−1e) = h1k1, for h1k1 ∈ HK, since HK is a subgroup. Taking inverses, we have

hk = k−1
1 h−1

1 ∈ KH, showing HK ⊆ KH, which gives what we want.

For (ii), we use the following observation. Suppose f : X → Y is a surjective set function between finite sets X and Y such that

for all y ∈ Y , |f−1(y)| = r. Then |Y | ·r = |X|. This follows since X is the disjoint union of the sets f−1(y), as y ranges over the
elements in X. With this in mind, set r := |H ∩K| and let f : H ×K → HK be the set function taking each (h, k) in H ×K
to hk in HK. We need to show that each hk ∈ HK has r pre-images in H ×K. Fix hk ∈ HK. For each x ∈ H ∩K, we have

r distinct elements (hx, x−1k) such that f(hx, x−1k) = hk. Suppose f(h1, k1) = hk, i.e., h1k1 = hk. Then h−1h1 = kk−1
1 .

Calling this element y, we have y ∈ H ∩ K. Thus, h1 = hy and k1 = y−1k, showing that we have accounted for all of the
elements in f−1(hk). Thus, |f−1(hk)| = r. �

4. Let G be a group and H ⊆ G a proper subgroup. The normalizer of H in G is the set NG(H) := {g ∈ G | gHg−1 = H}.
(i) Show that NG(H) is the largest subgroup of G in which H is normal

(ii) Show that there is a 1-1 correspondence between the distinct (left) cosets of NG(H) and the distinct conjugates of H.

(iii) Show that if G is finite, then G 6=
⋃
g∈G gHg

−1.

(iv) Let G = Gl2(C) and H be the subgroup of lower triangular matrices. Show that G =
⋃
g∈G gHg

−1. Hint: Use the

Jordan Canonical Form theorem.

Solution. For (i), suppose a, b ∈ NG(H). Then abH(ab)−1 = abHb−1a−1 = aHa−1 = H, so ab,∈ NG(H). Suppose
a−1ha ∈ a−1Ha. Then, h = ah′a−1, for some h′ ∈ H. Thus, a−1ha = a−1(ah′a−1)a = h′ ∈ H, showing a−1Ha ⊆ H. The

reverse containment is similar. Thus, a−1Ha = H, so NG(H) is a subgroup. Suppose K is a subgroup of G containing H in
which H is normal. Then kHk−1 = H, for all k ∈ K, so that K ⊆ NG(H), showing that NG(H) is the largest subgroup of G

in which H is normal.

For (ii), if now X denotes the set of distinct conjugates of H and Y denotes the set of distinct left cosets of NG(H), we
define φ : X → Y by φ(gHg−1) = gNG(H). Then aHa−1 = bHb−1 if and only if (b−1a)Ha−1b = H if and only if
(b−1a)H(b−1a)−1 = H if and only if b−1a ∈ NG(H) if and only if aNG(H) = bNG(H), showing that φ is well-defined and 1-1.
Moreover, ψ is clearly onto, which gives what we want.
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For (iii), by (ii), if g1Hg
−1
1 , . . . , grHg

−1
r are the distinct conjugates of H, then g1NG(H), . . . , grNG(H) are the distinct left

cosets of NG(H). Now, G is the disjoint union of the cosets giNG(H), so that |G| = r · |NG(H)|. On the other hand,

|giHg−1
i | = |H| ≤ |NG(H)| and |

⋃
i giHg

−1
i | < r · |H|, since e belongs to each giHg

−1
i . Thus, we cannot have G =

⋃
i giHg

−1
i .

For (iv), if A ∈ G, then there exists g ∈ G such that g−1Ag is in JCF, which is lower triangular. Note, that since A is invertible,

its eigenvalues are non-zero, so that g−1Ag ∈ G, and therefore g−1Ag ∈ H. Thus, A ∈ gHg−1, which gives what we want. �

5. Prove the following facts about the group Sn.

(i) The conjugacy class of any single k-cycle is the set of all k-cycles.

(ii) For τ := (1, 2, . . . , n), the centralizer of τ in Sn is just 〈τ〉. Hint: Consider the conjugacy class of τ .

Solution. For (i) we first fix τ = (i1, . . . , ik) a k-cycle, and take any γ ∈ Sn. We note that γτγ−1 = (γ(i1), . . . , γ(ik)), since

γτγ−1(γ(ij)) = γ(ij+1), for 1 ≤ j ≤ k − 1 and γτγ−1(γ(ik)) = γ(i1). If j 6∈ {γ(i1), . . . , γ(ik)}, then γ−1(j) 6∈ {i1, . . . , ik}, so

that γτγ−1(j) = γγ−1(j) = j, which gives what we want. This shows that conjugacy class of τ is contained in the set of all

k-cycles. On the other hand if σ := (j1, . . . , jk) is an arbitrary k-cycle and we define γ as follows: γ(i1) = j1, . . . , τ(ik) = jk,

and γ(s) = s, for s 6∈ {i1, . . . , ik}, then by what we have just shown, γτγ−1 = σ. Thus, any k-cycle is in the conjugacy class of
τ , which gives what we want.

For (ii), by part (i), the conjugacy class of τ is the set of all n-cycles. Since there are (n−1)! n-cycles (check this!), the conjugacy

class of τ has (n− 1)! elements. Thus, [Sn : CSn (τ)] = (n− 1)!. Therefore |CSn (τ)| = n. Since o(τ) = n and τ ∈ CSn (τ), this

forces 〈τ〉 = CSn (τ), which is what we want. �

6. For the symmetric group Sn show that: (i) That the center of Sn is {id}, for n ≥ 3 and (ii) Sn = 〈(1, 2), (1, 2, . . . , n)〉.

Solution. For (i), let σ ∈ Sn be a non-identity element. Then σ(i) = j, for some i 6= j ∈ X := {1, 2, . . . , n}. Take k ∈ X\{i, j},
and let τ be any element in Sn satisfying τ(i) = i and τ(j) = k. Then, στ(i) = σ(i) = j and τσ(i) = τ(j) = k, showing that

στ 6= τσ. Thus, given any non-identity element σ ∈ Sn σ 6∈ Z(Sn), so Z(Sn) = {id}.

For (ii), set σ := (1, 2) and τ := (1, 2, . . . , n). Problem 5 shows that for any 2-cycle (a, b) and γ ∈ Sn, γ(a, b)γ−1 = (γ(a), γ(b)).

Thus, since τ i−1(1) = i and τ i−1(2) = i+ 1, it follows that τ i−1(1, 2)τ−(i−1) = (i, i+ 1) belongs to the subgroup generated by
σ and τ . Since Sn is generated by 2-cycles, it suffices to show that any 2-cycle is a product of 2-cycles with adjacent entries.

Let (a, b) be a 2-cycle, and we assume a < b. Say , b = a+ i, with i ≥ 1. Then,

(a, b) = (a, a+ 1)(a+ 1, a+ 2) · · · (a+ i− 2, a+ i− 1)(a+ i− 1, b)(a+ i− 2, a+ i− 1) · · · (a+ 1, a+ 2)(a, a+ 1). �

7. Prove the statements below to establish the following fact: For n ≥ 5, An is the only non-trivial normal subgroup of Sn.

(i) Let G be a group and A,B normal subgroups of G. Show that A ∩ B is a normal subgroup. Conclude that if A is a
simple group, then A ∩B = {e}.

(ii) Suppose G is a group and A ⊆ G is a normal subgroup of index two. Let B ⊆ G be a normal subgroup. Show that if

A is a simple group, then B must have order two. (Hint: For b1, b2 ∈ B, consider the cosets b1A and b2A. )
(iii) Let G be a group and B = {e, b} a normal subgroup of order two. Then b ∈ Z(G), the center of G.

(iv) Suppose G is a group, and A ⊆ G is a normal subgroup of index two. Show that if A is a simple group and Z(G) = {e},
then A is the only proper normal subgroup of G.

Conclude that An is the only proper normal subgroup of Sn, for n ≥ 5.

Solution. (i) This is pretty clear. A ∩ B is easily seen to be a subgroup, and if x ∈ A ∩ B and g ∈ G, then gxg−1 ∈ A and

gxg−1 ∈ B, so gxg−1 ∈ A ∩ B, showing that A ∩ B is normal in G. Since A ∩ B is also normal in A, if A is simple then
A ∩B = {e}.

(ii) To see this, first note that by (i) A ∩ B = {e}. Now, suppose b1, b2 ∈ B are non-identity elements. Then b1, b2 6∈ A, and

thus b1A = b2A, since A has index two. Therefore, b−1
2 b1 ∈ A and thus b−1

2 b2 ∈ A ∩ B = e, so that b1 = b2. Thus, B has two
elements.

(iii) This follows, since, for all g ∈ g, g−1bg = b, so bg = gb, i.e., b ∈ Z(G).

(iv) This follows from the previous step, since if there there were another normal subgroup, it would have to be contained in

Z(G).

So now, to apply the above to Sn with, n ≥ 5: An is a simple group of index two. To see that An is the only normal
subgroup of Sn it suffices by (iv) to see that Z(Sn) = {e}. But this follows from problem 6 �.

8. Let G be a non-abelian group of order p3, p a prime. How many conjugacy classes with more than one element does G have?

Solution. By the class equation, Z(G), the center of G is not trivial. Since G is non-abelian, |Z(G)| = p or p2. If |Z(G)| = p2,
G/Z(G) has order p, so that G/Z(G) is cyclic. Since this implies G is abelian, we must have |Z(G)| = p. Thus, the class

equation becomes:

p3 = |G| = p+ Σri=1|c(xi)|
= p+ Σri=1[G : CG(xi)],
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where the sum is taken over the conjugacy classes with more than one element. If for some 1 ≤ i ≤ r, [G : CG(xi)] = p2,
CG(xi)| = p and it would then follow that Z(G) = CG(xi), which is a contradiction, since xi 6∈ Z(G). Thus, we have that

[G : CG(xi)] = p. Therefore, p3 = p+ rp, which implies r = p2 − 1. �

9. Recall that if G acts on a set X with n elements, there exists a group homomorphism φ : G→ Sn.

(i) Find an explicit group homomorphism from Z2 × Z2 → S4.

(ii) Let Q8 act on itself via left multiplication. Use this action to find an explicit group homomorphism from Q8 to S8.
Now find two elements in S8 that generate a subgroup isomorphic to Q8.

You may use the theorem from class to infer that the maps into S4 and S8 you construct are group homomorphisms.

Solution. For (i), label the elements of Z2 × Z2 as follows: g1 := (0, 0), g2 := (1, 0), g3 := (0, 1), g4 := (1, 1). We define
φ : Z2 × Z2 → S4 as follows: φ(0, 0) = id. To see what φ(g2) should be, we let g2 act on Z2 × Z2 via the group operation

g2 + g1 = g2, g2 + g2 = g1, g2 + g3 = g4, g2 + g4 = g3, so we define φ(g2) :=

(
1 2 3 4
2 1 4 3

)
. Similarly, if we let g3, g4 act on

Z2 × Z2, we se φ(g3) =

(
1 2 3 4

3 4 1 2

)
and φ(g4) =

(
1 2 3 4

4 3 2 1

)
. It is straight forward now to check that φ is a group

homomorphism, e.g.,

φ(g2 + g3) = φ(g4) =

(
1 2 3 4
4 3 2 1

)
=

(
1 2 3 4
2 1 4 3

)(
1 2 3 4
3 4 1 2

)
= φ(g2)φ(g3).

Part (ii) is similar to part (i). If we label the elements in Q8 as g1 = 1, g2 = −1, g3 = i, g4 = −i, g5 = j, g6 = −j, g7 =

k, g8 = −k, and we let each element act on Q8 via multiplication, we will get φ : Q8 → S8 satisfying φ(1) = id, φ(−1) =(
1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

)
, φ(i) =

(
1 2 3 4 5 6 7 8

3 4 2 1 7 8 6 5

)
, φ(j) =

(
1 2 3 4 5 6 7 8

5 6 8 7 2 1 3 4

)
, etc. Since

Q8 = 〈i, j〉, it follows that

(
1 2 3 4 5 6 7 8

3 4 2 1 7 8 6 5

)
and

(
1 2 3 4 5 6 7 8

5 6 8 7 2 1 3 4

)
generate a subgroup of S8

isomorphic to Q8. �

10. Show that A4 does not have a subgroup of order six. This shows that the converse of Lagrange’s theorem does not hold.

(Hint: Use Cauchy’s theorem).

Solution. Suppose H ⊆ A4 is a subgroup of order six. Since |A4| = 12, H has index two and thus is normal in A4. On

the other hand, by Cauchy’s Theorem, H has an element of order two, say σ and an element of order three, say τ , which is

necessarily a 3-cycle. By re-indexing X4, without loss of generality, we may assume τ = (1, 2, 3). Thus, H contains the elements,
e, σ, τ, τ2 = (1, 3, 2). Consider the 3-cycle (2, 3, 4) ∈ A4. Then

(2, 3, 4)(1, 2, 3)(2, 3, 4)−1 = (2, 3, 4)(1, 2, 3)(2, 4, 3) = (1, 3, 4) ∈ H.

Therefore (1, 3, 4)2 = (1, 4, 3) also belongs to H. Counting the identity element, we now have six elements in H. But
(2, 4, 3)(1, 2, 3)(2, 3, 4) = (1, 4, 2) belongs to H, which gives seven distinct elements in H, which is a contradiction. Thus,

there are no subgroups of order six in A4.

In fact, one can show that the subgroups of A4 are:

(i) The three subgroups of order two: {e, (1, 2)(3, 4)}, {e, (1, 3)(2, 4)}, {e, (1, 4)(2, 3)}
(ii) The four subgroups of order three having the form {e, (i1, i2, i3), (i1, i3, i2)}

(iii) The one subgroup of order four: {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. �

Bonus Problems. Bonus problems must be essentially fully correct to receive any credit.

BP 1. Let σ ∈ Sn and write σ = τ1 · · · τr, a product of disjoint cycles. Suppose each τi is a ki-cycle. The cycle type of σ is the
set {k1, . . . , kr}. Prove that two elements in Sn are conjugate if and only if they have the same cycle type. Thus, the conjugacy

classes in Sn are determined by cycle type.

Solution. By problem five, for any k-cycle σ, its conjugacy class is the set of all k-cycles, and hence is the set of all permutations
with the same cycle type.

Now, if σ ∈ Sn is written as a product of disjoint cycles τ1 · · · τr, where τi is a ki-cycle, then by problem five, for any γ ∈ Sn,

γσγ−1 = (γτ1γ−1)(γτ2γ−1) · · · (γτrγ−1), which is a product of disjoint cycles of type k1, . . . , kr. Thus, if two elements of Sn
are conjugate, they have the same cycle type.

Now suppose τ1 · · · τr and σ1 · · ·σr have cycle type {k1, . . . , kr}. For each 1 ≤ c ≤ r, we write τc = (ic1, . . . , ickc ) and σc =

(jc1, . . . , jckc ). We now define γ(ic1) = jc1, . . . , γ(ickc ) = jckc , for all 1 ≤ c ≤ r, and γ(s) = s, for any S 6∈ {icd}1≤c≤r,1≤d≤kc .

Note that since the cycles τc are disjoint, γ is well-defined. By what we have shown in the case of one cycle, we have γτcγ−1 = σc,
for all 1 ≤ c ≤ r. Thus,

γτ1τ2 · · · τrγ−1 = γτ1γ
−1γτ2γ

−1 · · · γτrγ−1 = σ1σ2 · · ·σr,
which shows that any two permutations with the same cycle type are conjugate. Thus, the conjugacy class of any permutation

equals the set of all permutations having the same cycle type. �

BP 2. Let σ ∈ An and write c(σ) for the conjugacy class of σ in Sn. Show that either c(σ) is a conjugacy class in An or c(σ)
is the disjoint union of two conjugacy classes in An of equal order.
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Solution. Let cAn (σ) denote the conjugacy class of σ in An. We have |c(σ)| = [Sn : CSn (σ)]. Suppose CSn (σ) ⊆ An. Then

|c(σ)| = [Sn : CSn (σ)] = [Sn : An] · [An : CSn (σ)] = 2 · [An : CSn (σ)] = 2 · |cAn (σ)|.
Set r := [An : CSn (σ)] and let a1CSn (σ), . . . , arCSn (σ) denote the distinct left cosets of CSn (σ) in An (say a1 = e). Then

they are also distinct left cosets of CSn (σ) in Sn. It follows that there exist γ1, . . . , γr ∈ Sn\An such that

a1CSn (σ), . . . , arCSn (σ), γ1CSn (σ), . . . , γrCSn (σ)

are the distinct left cosets of CSn (σ) in Sn. Thus,

c(σ) = {a1σa−1
1 , . . . , arσa

−1
r } ∪ {γ1σγ

−1
1 , . . . , γrσγ

−1
r }, (∗∗)

a disjoint union. Since each γi is an odd permutation, we may write γi = bi(1, 2), where bi ∈ An. Thus, each γiσγ
−1
i =

bi((1, 2)σ(1, 2))b−1
i showing that each γiσγ

−1
i is an An conjugate of (1, 2)σ(1, 2) ∈ An. Since the group (1, 2)CSn (σ)(1, 2) is

contained in An and is isomorphic to CSn (σ), the number of An conjugates of (1, 2)σ(1, 2) equals the number of An conjugates

of σ. Thus (**) shows that c(σ) is the disjoint union of two conjugacy class in An having the same number of elements.

Now suppose CSn (σ) 6⊆ An. We will show cAn (σ) = c(σ). Clearly, cAn (σ) ⊆ c(σ). Let gσg−1 ∈ c(σ). If g is even, then

gσg−1 ∈ cAn (σ). Suppose g is odd. Let τ ∈ CSn (σ) be an odd permutation, which exists by assumption. Then gτ is even, and

we have, (gτ)σ(gτ)−1 = gτστ−1g−1 = gσg−1 showing that gσg−1 ∈ cAn (σ). Thus, c(σ) = cAn (σ), as required. �

BP3. Use Sylow theory to show that a group of order 144 is not a simple group. Hint: At some point, you should consider the
centralizer of an element of order 3.

Solution. Write |G| = 144 = 24 · 32. The possible number of Sylow 3-subgroups is: 1, 4, 16. If there is one, Sylow 3-
subgroups, it is normal. If there are four Sylow 3-subgroups, then G acting on the set of Sylow 3-subgroups gives rise to a group

homomorphism φ : G → S4, which must have non-trivial kernel, and hence G has a normal subgroup. Now suppose G has 16

Sylow 3-subgroups. If pair-wise they all intersect in (e), then G has 16 · 8 = 128 elements of order 3 or 9. There are then just
16 remaining elements in G, which leaves room for just one Sylow 2-subgroup, which is then normal in G.

Suppose P1, P2 are Sylow 3-subgroups and P1∩P2 6= (e). Then |P1∩P2| = 3, so that P1∩P2 = 〈x〉 for x an element x of order 3.

Since P1, P2 have order 9, they are abelian. Thus, P1, P2 ⊆ CG(x), which implies P1P2 ⊆ CG(x). Thus: |CG(x)| ≥ |P1P2| = 27,
|CG(x)| is divisible by 9 (since P1 ⊆ CG(x)), and |CG(x)| divides 144. This gives |CG(x)| = 72 or 36. In the first case, CG(x)

has index 2, and is thus normal in G. In the second case, CG(x) has index 4, which yields a group homomorphism from G to

S4, which must have non-trivial kernel. Thus, in all cases, G contains a non-trivial normal subgroup.
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